Impuls

(Witergleitet vun Impuls)
Zur Navigation springen Zur Suche springen
Physikalischi Grössi
Name Impuls
Formelzeiche vo dr Grössi
Grössen- und
Eiheite-
system
Eiheit Dimension
SI N·s
kg·m·s−1
M·L·T–1

Die füsikalischi Gröössi Impuls beschribt in dr klassische Mechanik d Beweegig vom ene Körper mit Masse, in dr Relatiwidäätstheorii au die vo masseloose Fotone.

Dr Impuls isch wie d Gschwindigkäit, wo mit em verchnüpft isch, e Wektorgröössi, het also e Betrag und zäigt in d Richdig vo dr Beweegig. Si bsundrigi Bedütig isch, ass er en Erhaltigsgröössi isch. Jede beweegligi Körper cha si Impuls, zum Bischbil bim ene Zämmebutsch, ganz oder zum Däil uf anderi Körper überdrääge oder vo andere Körper übernee. Au Fälder chönne dur e Chraftwirkig Impuls vo äim Däili uf en anders überdrääge.

D Bezäichnig und d Äinhäit

Im Internationale Äihäitesüsteem git s kä äigeni Äinhäit für en Impuls. Mä brucht N·s = kg·m·s−1.

Uf Änglisch säit män em Impuls momentum. S änglische impulse bezäichnet hingege e churzi Überdräägig vom ene Impuls, also e Chraftstooss.

Definizion, Zämmehäng mit Masse und Energii

Klassischi Mechanik

D Gschwindigkäit und dr Impuls häi die gliichi Richdig, aber nit umbedingt dr gliich Betrag.

In dr Mechanik vom Newton si dr Impuls und d Gschwindigkäit über d Masse vom Körper verchnüpft:

Wil d Masse e Skalar isch, si dr Impuls und d Gschwindigkäit Wektore mit dr gliiche Richdig.

Drzue chunnt dä Zämmehang zwüschen em Impuls, dr Masse und dr kinetische Energii:

.

Zum d Gschwindigkäit vom ene Körper z ändere, muess en Impuls überdräit wärde. Dr Impuls wo pro Zit überdrit wird isch d Chraft :

Elektrisch gladnigi Däili

Wenn elektrisch gladnigi Däili mit dr Masse dur en elektrischs Fäld in Beweegig gsetzt wärde, bechunnt mä die kinetischi Energii us em Brodukt vo Ladig und Potenzialdifferänz über:

Dr Impuls vom Däili isch denn:

Spezielli Relatiwidäätstheorii

In dr relatiwistische Füsik hängt dr Impuls vom ene Körper mit sinere Gschwindigkäit nitlinear zämme ( isch d Liechtgschwindigkäit):

.

Mit dr Masse und dr Energii

bestoot d Energii-Impuls-Beziejig

.

Wääred in dr klassische Füsik jede Körper e Masse het, wo vo Null verschiide isch, gältet die relatiwistischi Energii-Impuls-Beziejig au für Däili ooni Masse wie Photone. Si beweege sich immer mit dr Gschwindigkäit vom Liecht. Bim Photon hängt dr Betrag vom Impuls vo sinere Wällelengi λ ab:

,

isch s plancksche Wirkigskwantum. D Energii vom ene Photon isch bis uf e Faktor gliich grooss wie dr Betrag vo sim Impuls:

.


D Energii und dr Impuls, wo Beobachder, wo sich gegenenander beweege, am e Körper feststelle, si dur e Lorentztransformation mitenander verbunde.

D Impulsdichdi vom elektromagnetische Fäld, wo iire Name überchoo het in Aaläänig an d Energiidichdi , isch s Chrüzbrodukt vom elektrische und magnetische Fäld

.

Wenn mä s mit multipliziert isch s d Energiistromdichdi, dr Poynting-Wektor. Integriert mä d Impulsdichdi über e Wolume, so bechunnt mä dr Impuls vom elektromagnetische Fäld in däm Wolume über.

D Erhaltig vom Impuls

Aastooss bim Billiard: Dr Impuls vo dr wisse Chuugele verdäilt sich uf alli Chuugele.

Dr Impuls isch en Erhaltigsgröössi, denn im ene abgschlossene Süsteem (gnauer: eme abgschlossene Inerzialsüsteem) blibt dr Gsamtimpuls, d Summe vo alle Äinzelimpuls, wo im Süsteem ufdräte, konstant.

Dr Gsamtimpuls am Aafang isch also au gliich wie d Wektorsumme vo de Äinzelimpuls zu irgendene spöötere Zitpunkt. Bütsch und anderi Vorgäng, wo sich bin ene d Gschwindigkäite ändere, enden stets so, verletze das Brinzip nie.

Bim unelastische Butsch goot kinetische Energii dur blastischi Verformig verlore, aber dr Impulserhaltigssatz isch vom Energiierhaltigssatz unabhängig und gältet bi elastische wie au bi unelastische Bütsch.

Chraftstooss

Impulsänderig und Chraft-Zit-Flechi

Vo dr Chraft uf e Körper und wie lang si wirkt, git s en Änderig vom Impuls, und die bezäichnet mä als Chraftstooss. D Gröössi und au d Richdig vo dr Chraft spiile e Rolle. Dr Chraftstooss wird vilmol mit em Formlezäiche bezäichnet, sino SI-Äinhäit isch 1 N · s.

Wenn d Chraft im Zitinterwall konstant isch, cha mä dr Chraftstooss mit dere Gliichig berächne:

.

Wenn aber nit konstant isch, cha mä äntwääder mit ere middlere Chraft rächnen oder aber, wenn bekannt isch, dr Chraftstooss dur Integrazion uusefinde:

.

Dr Impuls im Lagrange- und Hamilton-Formalismus

Im Lagrange- und Hamilton-Formalismus wird dr generalisierti Impuls iigfüert; die drei Komponänte vom Impulsvektor zele zum generalisierte Impuls; aber au zum Bischbil dr Dräiimpuls.

Im Hamilton-Formalismus und in dr Kwantemechanik isch dr Impuls d Wariable, wo zum Ort kanonisch konjugiert isch. Dr (generalisierti) Impuls wird in däm Zämmehang au as kanonische Impuls bezäichnet. Die möglige Bäärli vo Ortskoordinate und kanonische Impuls vom ene füsikalische Süsteem bilde in dr hamiltonsche Mechanik de Faaseruum.

In Magnetfälder git s im kanonische Impuls vom ene gladnige Däili non e Term, wo mit em Wektorpotenzial vom B-Fäld zämmehängt.

Dr Impuls in ströömende Medie

Bi Massene, wo kontinuierlig verdäilt si, wie zum Bischbil in dr Ströömigsmechanik, isch im e chliine Gebiet um e Punkt d Masse Dodrbi isch s Wolume vom Gebiet. isch d Massedichdu am Ort . Si cha sich mit dr Zit ändere.

Dr Impuls in däm Gebiet isch Masse mol Gschwindigkäit . Massedichdi mol Gschwindigkäit isch also d Impulsdichdi .

D Kontinuitäätsgliichih

säit, ass sich dr Impuls im ene chliine Gebiet nume ändere, wenn en Impulsstroom, wo nid usgliche isch, in s und us em Gebiet ströömt und e Chraft wirkt.

Do isch dr ersti Term uf dr lingge Site d Änderig vo dr Impulsdichdi mit dr Zit und dr zwäiti Term beschribt die rüümligi Änderig vom Impulsstrom. Die rächti Site isch d Chraftdichdi, wo uf s Wolumenelimänt wirkt; zum Bischbil dr Gradiänt vom Druck oder s Gwicht, .

Dr Impuls in dr Kwantemechanik

In dr Kwantemechanik het e füsikalische Zuestand normalerwiis kä gnaue Impuls. M# cha nume d Woorschinligkäit aagee, dass dr Impuls vom ene Däili in äim oder eme andere Beroich lit. Für en Ort gältet Entsprächends. Für Impuls und Ort gältet die heisenbergschi Unschärfirelazioon, wo säit, ass e Däili zur gliiche Zit nid e genaue Impuls und e genaue Ort cha ha.

Eigenzueständ vom Impulsoperator si ebeni Wälle mit dr Wällelengi

,

wo s plancksche Wirkigskwantum isch. D De-Broglie-Wällelengi vo Materialwälle vo freie Däili isch also dur en Impuls bestimmt. Do muess mä Achdig gee, ass dr Impuls in dr Kwantemechanik em kanonische Impuls, also im Allgemäine nit em kinetische Impuls, entspricht.

Litratuur

  • Feynman, Leighton, Sands: Lectures on Physics. Volume 1, 9 - 1, Reading, Ma., 1963.
The article is a derivative under the Creative Commons Attribution-ShareAlike License. A link to the original article can be found here and attribution parties here. By using this site, you agree to the Terms of Use. Gpedia Ⓡ is a registered trademark of the Cyberajah Pty Ltd.